- Q. 3 A current carrying circular loop of radius R is placed in the x-y plane with centre at the origin. Half of the loop with x > 0 is now bent so that it now lies in the y-z plane.
 - (a) The magnitude of magnetic moment now diminishes
 - (b) The magnetic moment does not change
 - (c) The magnitude of B at (0,0,z), z > R increases
 - (d) The magnitude of B at (0,0,z), z >> R is unchanged

K Thinking Process

The magnetic moment of circular loop and the net magnitudes of magnetic moment of each semicircular loop of radius R lie in the x-y plane and the y-z plane are compared.

Ans. (*a*) The direction of magnetic moment of circular loop of radius *R* is placed in the *x*-*y* plane is along *z*-direction and given by $M = I(\pi r^2)$, when half of the loop with x > 0 is now bent so that it now lies in the *y*-*z* plane, the magnitudes of magnetic moment of each semicircular loop of radius *R* lie in the *x*-*y* plane and the *y*-*z* plane is $M' = I(\pi r^2)/4$ and the direction of magnetic moments are along *z*-direction and *x*-direction respectively. Their resultant

$$M_{\rm net} = \sqrt{M'^2 + M'^2} = \sqrt{2} M' = \sqrt{2} I (\pi r^2) / 4$$

So, $M_{net} < M$ or M diminishes.